
Docker	on	Ubuntu
Friday,	August	4,	2017	1:48	PM

Install	and	configure	Docker,	along	with	deploying	and
managing	Linux-based	containers,	on	an	Ubuntu	server.

This	is	a	short	workshop	to	introduce	you	to	Linux-based	containers.	In	this	workshop,	you	will
gain	experience	in	installing	and	configuring	Docker	on	an	Ubuntu	server.	You'll	then	deploy	a
couple	of	different	images	as	containers	to	the	server	and	experiment	with	managing	those
images	and	containers.	Finally,	you	will	configure	Azure	to	allow	you	to	access	those	containers
from	outside	of	your	virtual	network.

What	You	Will	Learn
Installing	and	Configuring	Docker	on	Ubuntu
Downloading	and	Managing	Images
Deploying	and	Working	With	Containers
Exposing	Docker	Services	in	Azure

Ideal	Audience
IT	Managers
Developers	and	Software	Architects
Configuration	and	Change	Managers
DevOps	Engineers

This	is	a	short	workshop	to	introduce	you	to	Linux-based	containers.	In	this	workshop,	you	will	gain
experience	in	installing	and	configuring	Docker	on	an	Ubuntu	server.	You'll	then	deploy	a	couple	of
different	images	as	containers	to	the	server	and	experiment	with	managing	those	images	and
containers.	Finally,	you	will	configure	Azure	to	allow	you	to	access	those	containers	from	outside	of
your	virtual	network.

Time	Estimate:	2.5	hours

Overview

Setup	Requirements
The	following	workshop	will	require	that	you	use	a	Telnet/SSH	client	in	order	to	connect	to	a	remote
machine.	If	you	do	not	have	a	SSH	client,	then	PuTTY	will	work	fine.	Depending	on	your	environment,
download	the	executable	in	a	standalone	file	(.EXE)	or	an	installable	package	(.MSI),	either	in	a	32-bit
or	64-bit.

Additional	Requirements
For	the	following	workshop,	you	will	need	a	subscription	(trial	or	paid)	to	Microsoft	Azure.	Please	see
the	next	page	for	how	to	create	a	trial	subscription,	if	necessary.

Requirements

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
Azure_Registration.html

Azure
We	need	an	active	Azure	subscription	in	order	to	perform	this	workshop.	There	are	a	few	ways	to
accomplish	this.	If	you	already	have	an	active	Azure	subscription,	you	can	skip	the	remainder	of	this
page.	Otherwise,	you'll	either	need	to	use	an	Azure	Pass	or	create	a	trial	account.	The	instructions	for
both	are	below.

Azure	Pass
If	you've	been	provided	with	a	voucher,	formally	known	as	an	Azure	Pass,	then	you	can	use	that	to
create	a	subscription.	In	order	to	use	the	Azure	Pass,	direct	your	browser	to
https://www.microsoftazurepass.com	and,	following	the	prompts,	use	the	code	provided	to	create
your	subscription.

Trial	Subscription
Direct	your	browser	to	https://azure.microsoft.com/en-us/free/	and	begin	by	clicking	on	the	green
button	that	reads	Start	free.

1.	 In	the	first	section,	complete	the	form	in	its	entirety.	Make	sure	you	use	your	real	email
address	for	the	important	notifications.

2.	 In	the	second	section,	enter	a	real	mobile	phone	number	to	receive	a	text	verification
number.	Click	send	message	and	re-type	the	received	code.

3.	 Enter	a	valid	credit	card	number.	NOTE:	You	will	not	be	charged.	This	is	for	verification	of
identity	only	in	order	to	comply	with	federal	regulations.	Your	account	statement	may	see	a
temporary	hold	of	$1.00	from	Microsoft,	but,	again,	this	is	for	verification	only	and	will	"fall
off"	your	account	within	2-3	banking	days.

4.	 Agree	to	Microsoft's	Terms	and	Conditions	and	click	Sign	Up.

This	may	take	a	minute	or	two,	but	you	should	see	a	welcome	screen	informing	you	that	your
subscription	is	ready.	Like	the	Office	365	trial	above,	the	Azure	subscription	is	good	for	up	to	$200	of
resources	for	30	days.	After	30	days,	your	subscription	(and	resources)	will	be	suspended	unless	you
convert	your	trial	subscription	to	a	paid	one.	And,	should	you	choose	to	do	so,	you	can	elect	to	use	a
different	credit	card	than	the	one	you	just	entered.

Azure	Registration

https://www.microsoftazurepass.com/
https://azure.microsoft.com/en-us/free/

Congratulations!	You've	now	created	an	Office	365	tenant;	an	Azure	tenant	and	subscription;	and,
have	linked	the	two	together.

Objective
The	first	objective	is	for	you	to	become	familiar	with	connecting	to	and	navigating	the	Azure	portal.
This	will	not	be	a	difficult	exercise,	but	will	nonetheless	demonstrate	how	to	work	within	the	Azure
user	interface.

Azure	Portal	Basics
Let's	start	by	connecting	to	the	Azure	portal	and	becoming	familiar	with	navigation.

1.	 Open	a	browser	and	navigate	to	http://www.azure.com.

2.	 In	the	top-right	corner	of	your	screen,	you	will	see	the	menu	option	PORTAL.	Click	on	it.

3.	 If	you	have	not	already,	you	will	be	required	to	authenticate.

4.	 After	authentication	is	successful,	you	will	be	directed	to	your	Dashboard.	The	dashboard	is
configurable	by	adding,	removing	and	resizing	tiles.	Additionally,	you	can	have	multiple
dashboards	depending	on	your	preferences.	You	could	have	different	dashboards	for
resources	dedicated	to	different	functions,	lines	of	business,	or	for	operations.

5.	 On	the	left	will	be	your	primary	navigational	menu.	You	should	see	a	list	of	favorited	services
on	the	menu	with	descriptions.	(NOTE:	The	number	of	options	listed	in	your	menu	may	differ
from	that	of	others	depending	on	the	number	of	services	you	have	selected	as	a	favorite.)	If
all	you	see	are	icons	(no	descriptions)	on	your	menu,	your	menu	is	currently	collapsed.	Click
the	"hamburger"	 	to	expand	it.

6.	 Pretty	close	to	the	top	of	your	menu,	you	should	see	Resource	Groups	 .	Click	this
option.

7.	 Upon	clicking	the	Resource	Groups	menu	item,	a	blade	will	open	revealing	any	created
resource	groups.	In	order	to	create	resources	in	Azure,	you	must	assign/place	it	in	a	resource
group.

This	is	where	we	will	get	started	creating	our	resources.

While	this	introduction	wasn't	too	technical,	it	is	sufficient	for	getting	us	to	a	point	where	we	can
begin	the	specifics	in	the	workshop.	If	you'd	like	to	look	around	a	bit	more,	click	a	few	of	the	other
options	in	the	main	menu.	Then,	when	you	are	ready,	can	you	proceed	to	the	next	step.

Exploring	Azure

http://www.azure.com/
Create_a_Virtual_Machine.html

Objective
Now	that	we've	explored	the	Azure	portal	a	bit,	let's	get	started	with	creating	some	resources.	Our
primary	resource	will	be	a	virtual	machine	on	which	we	install	Docker.	Once	we	create	the	virtual
machine,	we'll	see	that	some	additional	resources	are	created	for	us.

Create	a	Resource	Group
As	stated	on	the	previous	page,	in	order	to	create	resources,	we	need	a	Resource	Group	to	place
them	in.

1.	 If	you	are	not	there	already,	go	ahead	and	click	on	the	Resource	Groups	 	in	the	Azure
Portal	to	open	the	Resource	Groups	blade.

2.	 At	the	top	of	the	Resource	Groups	blade,	click	on	Add	 .	This	will	open	a	panel	that	asks
for	some	basic	configuration	settings.

3.	 Complete	the	configuration	settings	with	the	following:

Resource	group	name:	azworkshops_docker_ubuntu_demo
Subscription:	<choose	your	subscription>
Resource	group	location:	<choose	your	location>

4.	 <Optional>	Check	Pin	to	dashboard	at	the	bottom	of	the	panel.

5.	 Click	Create.

6.	 It	should	only	take	a	second	for	the	resource	group	to	be	created.	Once	you	click	create,	the
configuration	panel	closes	and	returns	you	to	the	list	of	available	resource	groups.	Your
recently	created	group	may	not	be	visible	in	the	list.	Clicking	on	Refresh	 	at	the	top	of
the	Resource	Groups	blade	should	display	your	new	resource	group.

NOTE:	When	you	create	a	resource	group,	you	are	prompted	to	choose	a	location.	Additionally,	as
you	create	individual	resources,	you	will	also	be	prompted	to	choose	locations.	The	location	of
resource	groups	and	their	resources	can	be	different.	This	is	because	resource	groups	store	metadata
describing	their	contained	resources;	and,	due	to	some	types	of	compliance	that	your	company	may
adhere	to,	you	may	need	to	store	that	metadata	in	a	different	location	than	the	resources
themselves.	For	example,	if	you	are	a	US-based	company,	you	may	choose	to	keep	the	metadata
state-side	while	creating	resources	in	foreign	regions	to	reduce	latency	for	the	end-user.

Create	a	Virtual	Machine

Create	a	Virtual	Machine
Now	that	we	have	an	available	resource	group,	let's	create	the	actual	Ubuntu	server.

1.	 If	you	are	not	there	already,	go	ahead	and	navigate	to	the
azworkshops_docker_ubuntu_demo	resource	group.

2.	 At	the	top	of	the	blade	for	our	group,	click	on	Add	 .	This	will	display	the	blade	for	the
Azure	Marketplace	allowing	you	to	deploy	a	number	of	different	solutions.

3.	 We	are	interested	in	deploying	an	Ubuntu	server.	Therefore,	in	the	Search	Everything	box,
type	in	Ubuntu	Server.	This	will	display	a	couple	of	different	versions.	Since	we	want	to
deploy	the	latest	stable	version	of	Ubuntu,	from	the	displayed	options,	choose	Ubuntu
Server	16.04	LTS.

4.	 This	will	display	a	blade	providing	more	information	about	the	server	we	have	chosen.	To
continue	creating	the	server,	choose	Create.

5.	 We	are	now	prompted	with	some	configuration	options.	There	are	3	sections	we	need	to
complete	and	the	last	section	is	a	summary	of	our	chosen	options.

1.	 Basics

Name:	docker-ubuntu
VM	disk	type:	SSD
Username:	localadmin
Authentication	type:	Password
(NOTE:	You	can	choose	SSH	if	you	are	familiar	with	how	to	set	this	up.	If	you
are	not,	we	will	do	this	in	a	later	workshop.	However,	for	this	workshop,
Password	authentication	is	sufficient.)
Password:	Pass@word1234
Confirm	password:	<same	as	above>
Subscription:	<choose	your	subscription>
Resource	group:	Use	existing	-	azworkshops_docker_ubuntu_demo
Location:	<choose	a	location>

2.	 Size

DS1_V2
3.	 Settings

Use	managed	disks:	No

Storage	account:	(click	on	it	&	Create	New)

Name:	dockerubuntudata<random	number>	(ex.
dockerubuntudata123456)
(NOTE:	This	name	must	be	globally	unique,	so	it	cannot	already	be
used.)
Performance:	Premium
Replication:	Locally-redundant	storage	(LRS)

Virtual	network:	<accept	default>	(e.g.	(new)
azworkshops_docker_ubuntu_demo-vnet)

Subnet:	<accept	default>	(e.g.	default	(172.16.1.0/24))

Public	IP	address:	<accept	default>	(e.g.	(new)	docker-ubuntu-ip)

Network	security	group	(firewall):	<accept	default>	(e.g.	(new)	docker-
ubuntu-nsg)

Extensions:	No	extensions

Availability	set:	None

Boot	diagnostics:	Enabled

Guest	OS	diagnostics:	Disabled

Diagnostics	storage	account:	(click	on	it	&	Create	New)

Name:	dockerubuntudiags<random	number>	(ex.
dockerubuntudiags123456)
Performance:	Standard
Replication:	Locally-redundant	storage	(LRS)

4.	 Summary	(just	click	OK	to	continue)

This	machine	is	relatively	small,	but	with	containers,	it	can	still	deliver	some	pretty	impressive
performance.	Once	scheduled,	it	may	take	a	minute	or	two	for	the	machine	to	be	created	by	Azure.
Once	it	has	been	created,	Azure	should	open	the	machine's	status	blade	automatically.

Connect	to	the	Virtual	Machine
Once	your	machine	has	been	created,	we	can	remotely	connect	to	it	using	secure	shell	(SSH).	These
instructions	assume	that	you	do	not	have	strong	familiarity	with	SSH	and/or	that	you	have	no	built-in
SSH	client	in	your	local	OS.	For	this	reason,	we	will	be	using	the	PuTTY	client	we	downloaded	earlier
for	the	workshop.	However,	if	you	are	more	comfortable	using	another	Telnet/SSH	client	(e.g.	MacOS,
Linux,	Windows	Sub-Layer	(WSL)),	please	feel	free	to	use	it.

Get	Public	IP
1.	 If	it	is	not	already	open,	navigate	to	the	Overview	blade	of	your	newly	created	virtual

machine.

2.	 In	the	top	section	of	the	blade,	in	the	right	column,	you	should	see	a	Public	IP	address
listed.	

3.	 Copy	the	IP	address.

Connect	with	SSH
1.	 Open	PuTTY.

2.	 In	the	configuration	window:

Hostname:	<IP	address	from	previous	step>
Port:	22
Connection	type:	SSH

3.	 Click	Open

4.	 In	the	security	prompt,	click	Yes.

5.	 You	will	then	connect	to	the	remote	Ubuntu	server.

6.	 Enter	the	username	and	password	from	above	(e.g.	localadmin	and	Pass@word1234,
respectively).

7.	 You	should	then	see	the	 bash 	prompt:

localadmin@docker-ubuntu:~$

Congratulations.	You	have	successfully	created	and	connected	to	your	remote	Ubuntu	server	in
Azure.	You	are	now	ready	to	install	the	Docker	runtime.

Overview
We	have	just	created	our	Ubuntu	server.	We	now	need	to	apply	any	available	system	updates	along
with	installing	and	configuring	Docker	to	begin	working	with	containers.

Install	Updates
Just	like	any	other	operating	system,	updates	are	periodically	released	to	support	new	features	and
patch	any	potential	security	threats.	We	will	apply	the	updates	first.

1.	 If	you	have	not	already,	connect	to	your	remote	Ubuntu	server	and	login.

2.	 From	the	login	prompt,	you	may	see	a	status	of	available	updates.	(If	not,	don't	be	too
alarmed	-	continue	with	these	steps	anyway	just	to	be	sure.)

3.	 First	we	need	to	ensure	our	list	of	sources	for	our	system	updates	are	up-to-date.	From	the

Install	Docker

command	prompt,	type	the	following:

sudo	apt-get	update

4.	 Now	we	can	install	updates.	From	the	command	prompt,	type	the	following	to	automatically
install	all	available	updates:

sudo	apt-get	upgrade	-y

5.	 Depending	on	the	number	and	size	of	available	updates,	this	process	may	take	a	few
minutes.	Now	would	be	a	good	time	to	take	a	break.

Install	Docker
We	now	have	an	updated	Ubuntu	operating	system.	We	are	ready	to	install	Docker.

1.	 We	need	to	add	the	GPG	key	for	the	official	Docker	repository	to	the	system	because	in	the
next	step	we	want	to	download	the	Docker	'installer'	directly	from	Docker	and	not	the	default
Ubuntu	servers	to	ensure	we	get	the	latest	version	of	the	engine.	From	the	command
prompt,	type	the	following:

sudo	apt-key	adv	--keyserver	hkp://p80.pool.sks-keyservers.net:80	--recv-keys	5
8118E89F3A912897C070ADBF76221572C52609D

Cut	&	Paste
You	can	paste	this	into	PuTTY	by	right-clicking	the	terminal	screen.

2.	 Now,	we	need	to	tell	Ubuntu	where	the	Docker	repository	is	located.	From	the	command
prompt,	type	(or	paste)	the	following:

sudo	apt-add-repository	'deb	https://apt.dockerproject.org/repo	ubuntu-xenial	m
ain'

3.	 Once	again,	update	the	package	database	with	the	Docker	packages	from	the	newly	added
repository:

sudo	apt-get	update

4.	 Make	sure	you	are	about	to	install	from	the	Docker	repository	instead	of	the	default	Ubuntu
repository:

apt-cache	policy	docker-engine

5.	 You	should	see	output	similar	to	the	following	(notice	that	 docker-engine 	is	not	installed	and
the	 docker-engine 	version	number	might	be	different):

docker-engine:
Installed:	(none)
Candidate:	1.11.1-0~xenial
Version	table:
			1.11.1-0~xenial	500
						500	https://apt.dockerproject.org/repo	ubuntu-xenial/main	amd64	Packages
			1.11.0-0~xenial	500
						500	https://apt.dockerproject.org/repo	ubuntu-xenial/main	amd64	Packages

6.	 Finally,	install	Docker:

sudo	apt-get	install	-y	docker-engine

7.	 Installing	the	Docker	engine	may	take	an	additional	minute	or	two.

Additional	Configuration
To	simplify	running	and	managing	Docker,	there's	some	additional	configuration	that	we	need	to
implement.	While	this	section	is	optional,	it	is	recommended	to	make	managing	Docker	much	easier.

Ensure	Docker	Engine	is	Running
1.	 From	the	command	prompt,	type:

sudo	systemctl	status	docker

2.	 You	should	see	something	similar	to	the	following:

●	docker.service	-	Docker	Application	Container	Engine
			Loaded:	loaded	(/lib/systemd/system/docker.service;	enabled;	vendor	preset:	
enabled)
			Active:	active	(running)	since	Sun	2017-06-04	22:38:16	UTC;	4min	10s	ago
					Docs:	https://docs.docker.com
	Main	PID:	32844	(dockerd)

3.	 Because	the	service	is	running,	we	can	now	use	the	 docker 	command	later	in	this
workshop.

Enable	Docker	Engine	at	Startup
Let's	make	sure	the	Docker	engine	is	configured	to	run	on	system	startup	(and	reboot).

1.	 From	the	command	prompt,	type:

sudo	systemctl	enable	docker

2.	 You	should	see	something	similar	to	the	following:

Synchronizing	state	of	docker.service	with	SysV	init	with	/lib/systemd/systemd-
sysv-install...
Executing	/lib/systemd/systemd-sysv-install	enable	docker

Elevate	Your	Privileges
Be	default,	running	the	 docker 	command	requires	root	privileges	-	that	is,	you	have	to	prefix	the
command	with	 sudo .	It	can	also	be	run	by	a	user	in	the	docker	group,	which	is	automatically
created	during	the	install	of	Docker.	If	you	attempt	to	run	the	 docker 	command	without	prefixing	it
with	 sudo 	or	without	being	in	the	docker	group,	you'll	get	an	output	like	the	following:

docker:	Cannot	connect	to	the	Docker	daemon.	Is	the	docker	daemon	running	on	th
is	host?.
See	'docker	run	--help'.

To	avoid	typing	 sudo 	whenever	you	run	the	 docker 	command,	add	your	username	to	the	docker
group:

sudo	usermod	-aG	docker	$(whoami)

You	will	then	need	to	log	out	and	back	in	for	the	changes	to	take	effect.

If	you	need	to	add	another	user	to	the	 docker 	group	(one	in	which	you	have	not	logged	in	as
currently),	simply	provide	that	username	explicitly	in	the	command:

sudo	usermod	-aG	docker	<username>

You've	successfully	installed	the	Docker	engine.	You	have	also	configured	it	to	run	at	startup	and
have	added	yourself	to	the	Docker	group	so	that	you	have	sufficient	privileges	for	running	Docker.

Overview
Now	that	we	have	Docker	installed,	we	are	able	to	deploy	images	as	containers.	In	this	short	step	of
the	workshop,	we	will	deploy	a	couple	of	small	containers	as	practice.

Hello	World
1.	 Ensure	you	have	logged	in	to	your	remote	Ubuntu	server	and	are	at	the	prompt.

2.	 From	the	command	prompt,	type	the	following:

docker	run	hello-world

3.	 You	should	then	see	something	similar	to	the	following:

Hello	World

Unable	to	find	image	'hello-world:latest'	locally
latest:	Pulling	from	library/hello-world
78445dd45222:	Pull	complete
Digest:	sha256:c5515758d4c5e1e838e9cd307f6c6a0d620b5e07e6f927b07d05f6d12a1ac8d7
Status:	Downloaded	newer	image	for	hello-world:latest

Hello	from	Docker!
This	message	shows	that	your	installation	appears	to	be	working	correctly.

To	generate	this	message,	Docker	took	the	following	steps:
	1.	The	Docker	client	contacted	the	Docker	daemon.
	2.	The	Docker	daemon	pulled	the	"hello-world"	image	from	the	Docker	Hub.
	3.	The	Docker	daemon	created	a	new	container	from	that	image	which	runs	the
				executable	that	produces	the	output	you	are	currently	reading.
	4.	The	Docker	daemon	streamed	that	output	to	the	Docker	client,	which	sent	it
				to	your	terminal.

To	try	something	more	ambitious,	you	can	run	an	Ubuntu	container	with:
	$	docker	run	-it	ubuntu	bash

Share	images,	automate	workflows,	and	more	with	a	free	Docker	ID:
	https://cloud.docker.com/

For	more	examples	and	ideas,	visit:
	https://docs.docker.com/engine/userguide/

I'll	explain	what	the	first	couple	of	lines	mean	later.	The	important	thing	here	is	to	see	that	around
the	7th	line,	you'll	see	the	message	'Hello	from	Docker!'	followed	by	a	line	informing	you	that	the
Docker	installation	'appears	to	be	working	correctly.'

Whalesay
Now	let's	run	another	fun	container.

1.	 From	the	command	prompt,	type:

docker	run	docker/whalesay	cowsay	'Azure	Rocks!'

2.	 After	downloading	the	dependent	images,	you	should	see	an	ASCII	whale	with	a	speech
bubble	containing	the	message	'Azure	Rocks!'.

This	image	is	based	on	the	old	Unix	cowsay	game.	We're	basically	running	cowsay	in	a	container	and
telling	the	whale	to	say	whatever	we	provide	in	single	quotes.	You	can	run	the	command	as	many
times	as	you'd	like	and	put	whatever	you'd	like	the	whale	to	say	in	single	quotes.	Go	ahead	and	give
it	a	try.	Notice,	that	after	the	first	time	running	the	container,	the	image	is	no	longer	downloaded.
More	about	this	in	the	next	section.

Overview
We've	successfully	deployed	a	couple	of	containers	into	our	Docker	engine.	In	this	section,	we'll	dig	a
little	deeper	into	working	with	and	interacting	with	containers.

Listing	Images
As	we	experienced	with	running	the	Whalesay	container	multiple	times,	the	actual	image	was	only
downloaded,	uncompressed	and	built	once.	On	all	subsequent	executions,	a	new	container	was
simply	instantiated	based	on	the	image.	Docker	keeps	a	local	repository	of	images	currently	in	use;
and,	those	images	cannot	be	deleted	until	all	dependent	containers	have	been	deleted.

To	view	a	list	of	currently	downloaded	images,	type	the	following	in	the	command	prompt:

docker	images

The	output	should	look	similar	to	the	following:

REPOSITORY										TAG																	IMAGE	ID												CREATED												
	SIZE
hello-world									latest														48b5124b2768								4	months	ago							
	1.84kB
docker/whalesay					latest														6b362a9f73eb								2	years	ago								
	247MB

There's	a	few	things	that	are	reported	to	us	here.

First,	we	see	the	repository,	including	the	namespace,	of	the	image.	The	 hello-world 	is	what	we
would	consider	a	library	image.	In	other	words,	it's	an	image	that,	for	lack	of	a	better	way	to	describe
it,	is	'built-in'	to	Docker.	For	 whalesay ,	we	see	that	the	repository	is	 docker .	We'll	talk	more	about
repositories	below.

The	second	column	shows	us	the	current	tag	of	the	image.	We	look	at	tagging	in	the	next	workshop
section.

Working	With	Containers

The	third	column	displays	a	unique	id	of	the	image.	Just	so	that	you	know,	we	can	refer	to	the	image
in	our	commands	throughout	the	exercise	by	the	full	name	as	it's	listed	under	 REPOSITORY ,	the
image	id,	or	simply	use	the	first	3	characters	in	the	image	id	(e.g.	 hello-world 	could	also	be
referenced	by	 48b5124b2768 	or	 48b).	The	thing	is,	the	minimum	is	3	characters,	but	if	you	have
multiple	images	that	have	the	same	first	3	characters,	you	may	need	to	use	a	couple	of	more	until
you	reach	a	differentiator.

The	created	column	does	not	report	when	you	downloaded	the	image	locally.	Instead,	it	reports	the
date	of	when	the	image	was	created	by	its	owner/designer.	This	is	a	great	column	for	DevOps	to	use
when	quickly	trying	to	determine	when	a	particular	image	was	created.

The	size	column	reports	the	total	size	of	the	image	-	a	sum	of	all	layers	comprised	to	make	the
image.

Docker	Repositories/Registries
A	registry	is	a	service	-	public	or	private	-	from	which	images	can	be	hosted	and	pulled	by	other
users.	Images	are	stored	in	these	repositories	under	namespaces	which	are,	typically,	usernames	or
organizational	names.

In	the	above	example,	the	 whalesay 	image	is	located	under	the	 docker 	namespace.	This	means
that	the	image	belongs	to	and	is	managed	by	the	Docker	organization.

Microsoft's	public	registry	is	hosted	by	Docker.	You	can	visit	Microsoft's	registry	at
https://hub.docker.com/u/microsoft/.	As	you	view	the	available	images	(which	are	only	available	for
Windows-based	machines),	you'll	see	that	each	begin	with	 microsoft/ .	If	we	were	to	pull	an	image
created	and	maintained	by	Microsoft	into	our	local	Docker	instance,	we	would	see	the	image
prefaced	by	that	namespace.

Inspecting	Images
There	are	a	couple	of	ways	we	can	get	some	greater	details	about	our	images.	We	can	view	the
underlying	metadata	of	our	image;	and,	we	can	see	the	build	history	of	the	image.

Image	Inspection	(Metadata)
To	view	the	metadata	of	an	image,	we'll	need	to	inspect	it.	From	the	command	prompt,	type	the
following:

docker	image	inspect	docker/whalesay

You	should	see	something	that	begins	with	the	following:

https://hub.docker.com/u/microsoft/

[
				{
								"Id":	"sha256:6b362a9f73eb8c33b48c95f4fcce1b6637fc25646728cf7fb0679b2da
273c3f4",
								"RepoTags":	[
												"docker/whalesay:latest"
],
								"RepoDigests":	[
												"docker/whalesay@sha256:178598e51a26abbc958b8a2e48825c90bc22e641de3
d31e18aaf55f3258ba93b"
],
								"Parent":	"",
								"Comment":	"",
								"Created":	"2015-05-25T22:04:23.303454458Z",
								"Container":	"5460b2353ce4e2b3e3e81b4a523a61c5adc238ae21d3ec3a577467465
2e6317f",
								"ContainerConfig":	{
												"Hostname":	"9ec8c01a6a48",
												"Domainname":	"",
												"User":	"",
												"AttachStdin":	false,
												"AttachStdout":	false,
												"AttachStderr":	false,
												"Tty":	false,
												"OpenStdin":	false,
												"StdinOnce":	false,
												"Env":	[
																"PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/
usr/bin:/sbin:/bin"
],
												"Cmd":	[
																"/bin/sh",
																"-c",
																"#(nop)	ENV	PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:
/usr/sbin:/usr/bin:/sbin:/bin"
],
												"Image":	"5d5bd9951e26ca0301423625b19764bda914ae39c3f2bfd6f1824bf53
54d10ee",
												"Volumes":	null,
												"WorkingDir":	"/cowsay",
												"Entrypoint":	null,
												"OnBuild":	[],
												"Labels":	{}
								},
								"DockerVersion":	"1.6.0",
								...

Take	a	moment	to	examine	the	metadata.	As	you	look	through	this	information,	you	will	find	various
attributes	that	describe	the	image.

Image	History
The	last	bit	of	information	that	the	 inspect 	command	reported	was	a	set	of	layers:

				"Layers":	[
								"sha256:1154ba695078d29ea6c4e1adb55c463959cd77509adf09710e2315827d66271
a",
								"sha256:528c8710fd95f61d40b8bb8a549fa8dfa737d9b9c7c7b2ae55f745c972dddac
d",
								"sha256:37ee47034d9b78f10f0c5ce3a25e6b6e58997fcadaf5f896c603a10c5f35fb3
1",
								"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6e
f",
								"sha256:b26122d57afa5c4a2dc8db3f986410805bc8792af3a4fa73cfde5eed0a8e5b6
d",
								"sha256:091abc5148e4d32cecb5522067509d7ffc1e8ac272ff75d2775138639a6c50c
a",
								"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6e
f",
								"sha256:d511ed9e12e17ab4bfc3e80ed7ce86d4aac82769b42f42b753a338ed9b8a566
d",
								"sha256:d061ee1340ecc8d03ca25e6ca7f7502275f558764c1ab46bd1f37854c74c5b3
f",
								"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6e
f"
]

Other	than	the	layer	id's,	this	doesn't	really	tell	you	much.	To	see	the	actual	build	history	of	the
image,	type	the	following	command:

docker	image	history	docker/whalesay

You'll	will	then	see	something	similar	to	the	following:

IMAGE															CREATED													CREATED	BY																													
									SIZE																COMMENT
6b362a9f73eb								2	years	ago									/bin/sh	-c	#(nop)	ENV	PATH=/usr/local/b
in:...			0B
<missing>											2	years	ago									/bin/sh	-c	sh	install.sh															
									30.4kB
<missing>											2	years	ago									/bin/sh	-c	git	reset	--hard	origin/mast
er							43.3kB
<missing>											2	years	ago									/bin/sh	-c	#(nop)	WORKDIR	/cowsay						
									0B
<missing>											2	years	ago									/bin/sh	-c	git	clone	https://github.com
/mo...			89.9kB
<missing>											2	years	ago									/bin/sh	-c	apt-get	-y	update	&&	apt-get
	in...			58.6MB
<missing>											2	years	ago									/bin/sh	-c	#(nop)	CMD	["/bin/bash"]				
									0B
<missing>											2	years	ago									/bin/sh	-c	sed	-i	's/^#\s*\(deb.*univer
se\...			1.9kB
<missing>											2	years	ago									/bin/sh	-c	echo	'#!/bin/sh'	>	/usr/sbin
/po...			195kB
<missing>											2	years	ago									/bin/sh	-c	#(nop)	ADD	file:f4d7b4b3402b
5c5...			188MB

Keep	in	mind	that	these	are	layers.	So	the	way	to	read	this	is	from	bottom-up,	meaning	that	the	last
row	is	actually	the	first	layer.	Then,	as	you	go	up	the	list,	additional	layers	are	applied.	The	bottom
layer	is	usually	a	base	image,	such	as	an	OS	and,	because	it's	the	OS,	is	usually	larger	in	size.	Then,
actions	or	commands	are	applied	to	that	image	that	make	up	the	additional	layers.	Some	of	the	last
actions	to	be	applied	to	this	image	were	running	an	install	script	and	setting	some	environment
variables.

Let's	take	a	look	at	another	example.	Download	another	image	to	your	local	Docker	engine	by	typing
the	following	command:

docker	image	pull	a11smiles/softcover

This	is	an	image	stored	under	my	personal	namespace	in	the	public	Docker	registry.	Softcover	is	a
ruby-based	application	used	to	build	digital	books	for	various	platforms.	Running	this	command	will
take	a	few	minutes,	but,	as	you	will	observe,	there's	quite	a	few	layers	to	this	image.

Once	this	image	download	and	reconstruction	has	completed,	check	out	the	history	of	the	image:

docker	image	history	a11smiles/softcover

You	will	see	all	of	the	commands,	which	include	installing	multiple	dependency	libraries	for	Softcover
(e.g.	 apt-get	install	...),	issued	to	build	the	image.	Some	of	these	dependencies	are	quite	large,
ranging	from	815kB	to	almost	4GB.	Image	the	time	it	would	require	to	download	all	of	these
requirements	manually.	This	doesn't	include	the	time	it	would	take	to	properly	and	consistently
configure	them	for	each	developer	and/or	environment.	With	the	Softcover	container,	in	this	case,
simply	download	the	image	and	run	the	container	with	supplying	your	book's	source	to	create	a
digital	publication.	This	can	be	easily	wired	up	in	an	automated	build	process.

Listing	Containers
Not	only	can	we	list	our	local	images,	but	we	can	also	list	our	local,	instantiated	containers.

Running	Containers
Type	in	the	command	line:

docker	ps

You	should	see	some	like	the	following:

CONTAINER	ID								IMAGE															COMMAND													CREATED												
	STATUS														PORTS															NAMES

This	tells	us	that	no	containers	are	currently	running.

Non-running	Containers
We	can	see	previously	ran	containers	by	typing	in	the	following:

docker	ps	-a

This	will	render	a	report	similar	to	the	following:

CONTAINER	ID								IMAGE															COMMAND													CREATED												
	STATUS																				PORTS															NAMES
a883ff18a967								docker/whalesay					"cowsay	Hola!"						26	hours	ago							
	Exited	(0)	26	hours	ago																							sad_goldstine
baa0591c4392								hello-world									"/hello"												26	hours	ago							
	Exited	(0)	26	hours	ago																							jovial_raman

You	may	see	more	depending	on	how	many	times	you	instantiated	the	 whalesay 	image.	The

You	may	see	more	depending	on	how	many	times	you	instantiated	the	 whalesay 	image.	The
important	thing	to	see	from	this	report	is	the	Status	of	containers.	All	containers,	in	this	report,	have
exited	and	are	no	longer	running.

One	thing	to	note	is	that	even	though	the	containers	have	finished	executing,	they	have	not	been
deleted.	This	allows	you	to	enter	into	a	stopped	container.	One	reason	this	may	be	useful	is	if	an
application	has	thrown	an	exception	and	quit,	you	may	want	to	enter	into	the	container	to	check	out
some	log	files	or	something	of	that	nature	to	debug	the	application.	Once	you're	done	with	the
container,	you	must	delete	it.	We	will	see	how	to	do	this	in	the	next	page	of	the	workshop.

Running	a	Container
We've	already	instantiated	a	couple	of	images.	We	do	this	by	the	following	command:

docker	run	<namespace/image>

There	are	two	primary	types	of	processes	-	short-running	and	long-running.

Short-running	Processes
Short-running	process	are	just	like	the	images	we've	already	ran	-	 hello-world 	and	 whalesay .
Another	example	is	the	 softcover 	image.	A	short-running	process	typically	runs	a	single	command,
performing	a	single	function,	then	exits.	This	function	could	be	displaying	a	message,	sending	an
email,	or	building	an	application	or	other	resource	(e.g.	a	book,	help	documentation,	etc).

Every	time	we	we	run	a	short-running	process,	using	the	above	command	another	container	is
instantiated.	This	is	why	a	new	container	was	created	ever	time	you	ran	 whalesay .

Long-running	Processes
Long-running	processes	are	typically	service-based	applications	(e.g.	web	servers,	service	buses,
queues,	etc.).	We	can	also	run	an	OS	as	a	container.	Try	typing	in	the	following:

docker	run	-it	ubuntu	/bin/bash

This	command	will	will	download	an	 ubuntu 	image	and	run	the	 bash 	shell	in	interactive	mode	(-i)
by	opening	up	a	terminal	(-t).	When	this	runs,	you	will	be	automatically	placed	inside	of	the
running	Ubuntu	container	(notice	the	change	in	the	command	prompt	(e.g.	something	similar	to
root@<container	id>:/#)).	If	you	are	familiar	with	Ubuntu,	feel	free	to	take	a	look	around.	To	exit
the	container,	simply	type	in	 exit .	This	will	return	you	to	your	host	machine.

Let's	now	run	Ubuntu	in	detached	mode.	Instantiating	a	container	in	interactive	mode	assumes	we
are	going	to	interact	with	the	running	container.	However,	typical	long-running	processes	(like	web
servers)	don't	require	command	line	interaction.	We'll	run	a	web	server	later	in	this	workshop.
However,	for	the	moment,	let's	mimic	a	long-running	process	by	running	Ubuntu	in	an	infinite	sleep
mode.	Execute	the	following	command:

docker	run	-d	ubuntu	sleep	inf

Again,	this	will	run	an	Ubuntu	container	in	detached	mode	(-d)	and	set	it	to	sleep	infinitely.

Let's	see	the	container	running	in	the	background	by	typing	in:

docker	ps

You	should	see	something	like:

CONTAINER	ID								IMAGE															COMMAND													CREATED												
	STATUS														PORTS															NAMES
094012b145c8								ubuntu														"sleep	inf"									2	seconds	ago						
	Up	2	seconds																												vigorous_yalow

You'll	see	under	the	Status	column,	that	it's	reporting	an	up-time	for	the	container.	We	don't	typically
run	commands	against	long-running	processes,	but	just	for	the	practice,	issue	the	following
command	(substitute	the	container	id	with	your	id):

docker	exec	094	ls

This	will	run	a	 list 	command	against	the	current	directory	inside	of	the	container	and	return	a	list
of	subfolders.

While	the	container	is	running,	let's	look	at	one	more	interesting	thing.	At	the	command	prompt,	type
the	following:

ps	aux

This	will	list	all	of	the	currently	running	processes.	As	you	scroll	and	look	at	the	background
processes,	you	should	see	a	line	similar	to	the	following.	The	process	id,	memory	consumption,	etc.
may	be	different	but	try	to	find	the	last	column.

root					55515		0.0		0.0			4380			664	?								Ss			01:39			0:00	sleep	inf

What	you	see	here	is	that	container	processes	are	exposed	to	the	host	kernel	and	have	access	to
host	system	resources.

Now	let's	stop	the	container.	Technically,	we	could	kill	the	process	using	traditional	Linux	(UNIX)
commands,	but	this	would	leave	our	Docker	engine	in	an	unclean	state	and	would	require	us	to	do
some	additional	clean	up.	Let's	stop	the	container	using	Docker	commands.

docker	stop	094

(NOTE:	Again,	 094 	is	the	first	3	characters	of	my	container's	id.	You'll	need	to	use	the	id	assigned	to
your	container.)

Running	 docker	ps 	again	should	show	you	that	no	more	containers	are	currently	running.

Re-running	a	Stopped	Container
There	will	be	times	when	you	may	need	to	re-run	a	stopped	container.	Find	one	of	the	stopped
'whalesay'	containers	by	typing	the	following:

docker	ps	-a

My	output	looks	like	the	following:

CONTAINER	ID								IMAGE															COMMAND													CREATED												
	STATUS																							PORTS															NAMES
094012b145c8								ubuntu														"sleep	inf"									27	minutes	ago					
	Exited	(137)	4	minutes	ago																							vigorous_yalow
a883ff18a967								docker/whalesay					"cowsay	Hola!"						27	hours	ago							
	Exited	(0)	38	minutes	ago																								sad_goldstine
baa0591c4392								hello-world									"/hello"												27	hours	ago							
	Exited	(0)	27	hours	ago																										jovial_raman

By	typing	the	following	command,	I	can	re-run	my	 whalesay 	container	without	instantiating	a	new
container	and	without	having	to	supply	any	parameters.	Basically,	I	can	re-run	the	container	as	it
was	originally	ran.

docker	start	-a	a88

(NOTE:	Again,	 a88 	is	the	first	3	characters	of	the	stopped	 whalesay 	container's	id.)

With	this	command,	we	are	restarting	a	stopped	container	and	attaching	(-a)	to	the	container's
output	(STDOUT/STDERR)	to	view	any	messages.	In	our	case,	the	message	is	a	simple	whale	with	a
speech	bubble.

Wow,	congratulations!	You	just	successfully	completed	what	may	seem	like	a	crash	course	in
managing	containers.	However,	there's	really	not	much	more	to	it	than	this.	As	with	anything,	the
more	you	play	with	Docker,	the	more	familiar	and	confident	you	become	with	it.

Overview
You've	just	learned	quite	a	bit	in	working	with	containers.	As	a	matter	of	fact,	the	majority	of
container	management	has	already	been	covered.	We're	now	going	to	bring	our	knowledge	of
container	and	image	management	around	full-circle.	This	will	complete	the	administration	portion	of
the	workshop.

Tagging	Images
There	will	be	instances,	like	DevOps	for	instance,	where	we	will	need	to	tag	our	images.	Tags	allow	us
to	apply	labels	to	our	images.	This	is	useful	for	tracking	changes,	such	as	in	versioning,	to	our
images.

Let's	create	a	simple	derivative	of	the	Ubuntu	image	we	downloaded	previously.

Instantiate	a	new	Ubuntu	container	by	typing	the	following:

docker	run	-it	ubuntu	/bin/bash

This	will	place	you	at	the	command	prompt	inside	of	the	running	container.	Now,	let's	interact	with
the	OS	by	typing	the	following	commands.

cd
mkdir	test
cd	test
echo	"This	is	some	sample	text."	>	test.txt
exit

We've	just	created	a	new	directory	with	a	test	text	file	in	the	user's	home	directory.	If	I	view	my
available	containers	(docker	ps	-a),	I'll	find	the	id	of	the	container	I	just	exited	from	(look	under	the
Status	column	for	the	container	that	was	just	exited).	In	my	case	(see	the	following	output),	the
container's	id	is	 335abd61d52d .

Image	and	Container
Administration

CONTAINER	ID								IMAGE															COMMAND													CREATED												
	STATUS																										PORTS															NAMES
335abd61d52d								ubuntu														"/bin/bash"									3	minutes	ago						
	Exited	(0)	About	a	minute	ago																							blissful_wing
094012b145c8								ubuntu														"sleep	inf"									About	an	hour	ago		
	Exited	(137)	27	minutes	ago																									vigorous_yalow
a883ff18a967								docker/whalesay					"cowsay	Hola!"						27	hours	ago							
	Exited	(0)	17	minutes	ago																											sad_goldstine
baa0591c4392								hello-world									"/hello"												27	hours	ago							
	Exited	(0)	27	hours	ago																													jovial_raman

Let's	restart	the	container	and	check	to	make	sure	our	text	file	is	still	there	(just	to	confirm).	Again,
replace	the	id	below	with	your	container's	id.

docker	start	-i	335

At	the	prompt	type	in:

ls	~/test

This	should	list	a	file	named	 test.txt .	Now,	type	 exit 	to	exit	out	of	the	container.

We	now	have	a	customized	container	based	on	our	Ubuntu	image.	Let's	create	our	own	image	with
it's	tag.	We're	also	going	to	add	a	message	and	an	author	to	the	image's	metadata.	Once	again,
replace	the	 335 	below	with	the	id	of	your	stopped	container.

docker	commit	-m	"added	test.txt"	-a	"Some	User"	335	mynamespace/testtext:v1

With	this	command,	again,	I'm	added	a	message	(-m)	to	describe	the	image	and	an	author	(-a)	to
inform	of	the	author.	The	 335 	is	the	first	3	characters	of	my	stopped,	modified	container.	Finally,	I've
supplied	a	namespace	(mynamespace/),	an	image	name	(testtext),	and	a	tag	(v1).

The	namespace	is	optional,	but	a	good	practice	to	differentiate	between	images	that	might	have	the
same	name.	For	example,	if	you	and	another	developer	are	working	on	two	separate	images	and	you
have	them	both	locally,	it's	easier	to	keep	track	of	who's	image	belongs	to	who.

Now	execute	the	following	command:

docker	images

You	should	see	something	similar	to	the	following:

REPOSITORY													TAG																	IMAGE	ID												CREATED									
				SIZE
mynamespace/testtext			v1																		556c25bff4b1								5	minutes	ago			
				118MB
ubuntu																	latest														7b9b13f7b9c0								3	days	ago						
				118MB
a11smiles/softcover				latest														306f23683872								3	months	ago				
				5.74GB
hello-world												latest														48b5124b2768								4	months	ago				
				1.84kB
docker/whalesay								latest														6b362a9f73eb								2	years	ago					
				247MB

Notice	that	you	now	have	your	custom	image	with	its	tag.	Also,	because	our	text	file	isn't	very	large,
our	image	has,	virtually,	the	same	size	as	that	of	the	 ubuntu 	image	(118MB).

We	can	then	instantiate	a	container	based	on	our	image	by	running	the	following:

docker	run	-it	mynamespace/testtext:v1	/bin/bash

(NOTE:	In	all	the	previous	times	we've	run	this	command,	we've	never	had	to	specify	a	tag	because
the	 latest 	tag	is	implied.	In	our	case,	the	tag	we	used	is	 v1 	so	we	have	to	specify	it.)

This	will	place	us,	once	again,	inside	the	container.	Run	the	following	command	in	the	container:

cat	~/test/test.txt

This	will	show	the	contents	of	the	file	we	added	earlier.

Now	we	can	exit	out	of	the	container	by	simply	typing	in	 exit .

In	the	host	machine,	typing	in	 docker	ps	-a 	shows	us	that	our	custom	image	instantiated	a
container	which	just	exited	successfully.

CONTAINER	ID								IMAGE																					COMMAND													CREATED						
							STATUS																											PORTS															NAMES
a215acbb7981								mynamespace/testtext:v1			"/bin/bash"									3	minutes	ago
							Exited	(0)	13	seconds	ago																												inspiring_spence
335abd61d52d								ubuntu																				"/bin/bash"									26	minutes	ag
o						Exited	(0)	16	minutes	ago																												blissful_wing
094012b145c8								ubuntu																				"sleep	inf"									About	an	hour
	ago			Exited	(137)	About	an	hour	ago																							vigorous_yalow
a883ff18a967								docker/whalesay											"cowsay	Hola!"						28	hours	ago	
							Exited	(0)	39	minutes	ago																												sad_goldstine
baa0591c4392								hello-world															"/hello"												28	hours	ago	
							Exited	(0)	28	hours	ago																														jovial_raman

Finally,	if	we	inspect	our	custom	image	(docker	image	inspect	mynamespace/testtext:v1),	we	will
see	the	comment	and	author	attributes	displaying	"added	test.txt"	and	"Some	User",	respectively.
And,	the	top	layer	of	our	history	(docker	image	history	mynamespace/testtext:v1)	shows	us
entering	into	the	 bash 	shell.

Deleting	Containers
We	can	clean	up	disk	space	by	removing	unused	containers	and	images.	However,	we	cannot
remove	any	images	that	currently	have	dependent	containers	-	even	containers	that	have	stopped.
Therefore,	we	must	delete	dependent	containers	first.

For	our	example,	let's	suppose	that	we	no	longer	need	the	 ubuntu 	container	anymore	because
we've	customized	it	(e.g.	added	our	own	text	file).	We	can	delete	the	 ubuntu 	container	by	typing	the
following:

docker	rm	335

Let's	also	delete	our	 hello-world 	container:

docker	rm	baa

Remember,	for	the	previous	two	commands,	substitute	your	respective	container	ids.

Deleting	Images
Deleting	images	are	just	as	easy.	First,	let's	refresh	ourselves	on	our	locally	installed	images.	Running
docker	images 	produces	the	following	output:

REPOSITORY													TAG																	IMAGE	ID												CREATED									
				SIZE
mynamespace/testtext			v1																		556c25bff4b1								19	minutes	ago		
				118MB
ubuntu																	latest														7b9b13f7b9c0								3	days	ago						
				118MB
a11smiles/softcover				latest														306f23683872								3	months	ago				
				5.74GB
hello-world												latest														48b5124b2768								4	months	ago				
				1.84kB
docker/whalesay								latest														6b362a9f73eb								2	years	ago					
				247MB

Since	images,	combined	with	their	namespaces	and	tags,	are	unique	on	the	local	Docker	engine,	we
can	delete	images	by	using	the	full	namespace	reference	(including	the	tag)	or	by	using	the	image
id.	Let's	practice	deleting	images.

First,	let's	delete	the	 hello-world 	image:

docker	rmi	hello-world

As	a	reminder,	the	 latest 	tag	is	implied.	If	we	were	to	delete	our	custom	image,	we	would	be
required	to	supply	the	tag	because	it	differs	from	 latest .

Running	the	 docker	rmi 	command	will	remove	any	links	between	the	image	and	shared	layers.	If
the	layer	is	no	longer	required	by	any	other	image,	the	layer	is	also	deleted.

Now,	let's	attempt	to	delete	the	 ubuntu 	image:

docker	rmi	ubuntu

Running	this	command	produces	and	error	-	namely,	that	the	image	cannot	be	deleted	because
there's	still	a	container	that	depends	on	it.	Running	 docker	ps	-a 	shows	that	this,	indeed,	is	the
case	(the	second	container	listed	below):

CONTAINER	ID								IMAGE																					COMMAND													CREATED						
							STATUS																											PORTS															NAMES
a215acbb7981								mynamespace/testtext:v1			"/bin/bash"									20	minutes	ag
o						Exited	(0)	17	minutes	ago																												inspiring_spence
094012b145c8								ubuntu																				"sleep	inf"									About	an	hour
	ago			Exited	(137)	About	an	hour	ago																							vigorous_yalow
a883ff18a967								docker/whalesay											"cowsay	Hola!"						28	hours	ago	
							Exited	(0)	About	an	hour	ago																									sad_goldstine

One	of	the	many	reasons	for	this,	is	to	protect	against	accidental	deletion	of	our	containers	and
images.	However,	if	are	sure	we	want	to	delete	the	image	and	all	its	containers,	we	can	force	a
deletion:

docker	rmi	-f	ubuntu

Besides	forcing	a	delete	of	the	image,	notice	how	the	output	is	different	from	the	previous	deletion	of
the	 hello-world 	image.	In	this	last	case,	only	the	reference,	or	link,	was	removed	from	the	image.
The	underlying	layers	weren't	deleted.	Why?	Because	the	custom	image	that	we	created	earlier	still
depends	on	the	underlying	Ubuntu	OS	layer(s).	This	is	one	way	Docker	helps	to	conserve	disk	space	-
shared	and	reuse	of	dependencies.	Deleting	our	custom	image	(and	containers)	would	perform	an
actual	delete	of	the	Ubuntu	OS	layer(s).

Overview
The	final	part	of	this	workshop	is	to	practice	exposing	a	container	service	outside	of	Azure.	We're
going	to	create	a	simple	web	server	and	access	it	from	our	local	machine.

NGINX
We	are	going	to	deploy	a	container	hosting	NGINX	(pronounced	"engine	X"),	a	simple,	but	powerful
web	server.	NGINX	is	typically	used	in	containerized	deployments	because	it	supports	autoscaling,
service	discovery	and	other	capabilities	often	leveraged	in	microservice	architecture.

Run	NGINX	by	typing	the	following	command:

docker	run	-d	-p	8080:80	nginx

This	will	download	and	run	NGINX	in	the	background.	As	stated	earlier	in	this	workshop,	we	often	run
services	in	detached	mode	(-d).	As	new	parameter	that	you	see	here	is	mapping,	or	publishing	(-
p),	ports	-	very	similar	to	a	NAT,	if	you	are	familiar	with	the	concept.	There	are	two	ports	specified
here	separated	by	a	colon.	The	first	number	is	the	host's	port	while	the	second	number	is	the
container's	port.	So,	in	essence,	we	are	mapping	the	host's	port	8080	to	the	container's	port	80.	If
our	container	runs	multiple	services	or	a	service	requiring	multiple	ports,	we	can	also	specify	a	port
range.	We	could	have	used	the	default	HTTP	port	80	for	the	host,	but	for	the	workshop	I	chose	port
8080	for	differentiation	between	the	two	environments	in	pursuit	of	clarity.

Let's	make	sure	that	NGINX	is	running	successfully.

curl	http://localhost:8080

Running	the	previous	command,	should	display	some	html	source	code.

Exposing	Services	In	Azure

<!DOCTYPE	html>
<html>
<head>
<title>Welcome	to	nginx!</title>
<style>
				body	{
								width:	35em;
								margin:	0	auto;
								font-family:	Tahoma,	Verdana,	Arial,	sans-serif;
				}
</style>
</head>
<body>
<h1>Welcome	to	nginx!</h1>
<p>If	you	see	this	page,	the	nginx	web	server	is	successfully	installed	and
working.	Further	configuration	is	required.</p>

<p>For	online	documentation	and	support	please	refer	to
nginx.org.

Commercial	support	is	available	at
nginx.com.</p>

<p>Thank	you	for	using	nginx.</p>
</body>
</html>

Network	Security	Group	(NSG)
Now	that	our	web	server	is	running,	let's	make	it	available	outside	of	Azure.

When	we	created	our	Ubuntu	virtual	machine,	we	accepted	the	defaults,	including	the	default
settings	for	our	NSG.	The	default	settings	only	allowed	SSH	(port	22)	access.	We	need	to	add	a	rule
to	our	NSG	to	allow	HTTP	traffic	over	port	8080.

1.	 If	you	are	not	still	there,	go	back	to	the	Azure	portal	and	navigate	to	the	settings	of	your
Ubuntu	virtual	machine.

2.	 In	the	left	menu,	click	on	Network	interfaces	 .

3.	 This	will	open	the	Network	Interfaces	blade	for	your	Ubuntu	virtual	machine.	Click	on	the
singular,	listed	interface.

4.	 In	the	left	menu,	click	on	Network	security	group	 .

5.	 This	will	list	the	currently	active	NSG.	In	our	case,	it	should	be	the	NSG	that	was	created	with
our	virtual	machine	-	docker-ubuntu-nsg.	Click	on	the	NSG	(NOTE:	Click	on	the	actual	NSG
link,	NOT	on	Edit).

6.	 In	the	left	menu,	click	on	Inbound	security	roles	 .

7.	 At	the	top	of	the	blade,	click	Add	 .

8.	 Enter	the	following	configuration:

Name:	allow-http
Priority:	1010
Source:	Any
Service:	Custom
Protocol:	Any
Port	range:	8080
Action:	Allow

9.	 Click	OK.

This	should	only	take	a	couple	of	seconds.	Once	you	see	the	rule	added,	open	a	new	browser	and
navigate	to	the	IP	address	of	your	Ubuntu	virtual	machine,	including	the	port	number.	The	IP	address
used	in	this	workshop's	screen	shots	is	40.121.213.77	(your	IP	address	will	be	different).	Using	the
aforementioned	IP	address,	I	would	direct	my	browser	to	http://40.121.213.77:8080.	Doing	so,	you
should	see	the	NGINX	landing	page.

